Waipuna
Halswell-Hornby-Riccarton Community Board
MINUTES ATTACHMENTS

Date: Tuesday 4 August 2020
Time: 4.01pm
Venue: Horoeka Room, Rārākau: Riccarton Centre,
199 Clarence Street, Christchurch

TABLE OF CONTENTS

4.1 Halswell Residents Association
 A. Matai AMS results CRA July 2020... 3
 B. Matai AMS results calibrated July 2020 ... 5

4.2 Graeme Dingle Foundation Canterbury
 A. Graeme Dingle Foundation Presentation 2020... 7
Rafter Radiocarbon

Accelerator Mass Spectrometry Result
This result for the sample submitted is for the exclusive use of the submitter. All liability whatsoever to any third party is excluded.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Matai #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Subfossil matai, excavated 1 m subsurface</td>
</tr>
<tr>
<td>Fraction dated</td>
<td>Wood</td>
</tr>
<tr>
<td>Submitter</td>
<td>David Hawke</td>
</tr>
<tr>
<td></td>
<td>Ara Institute of Canterbury Ltd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conventional Radiocarbon Age</th>
<th>932 ± 20 (years BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta^{13}C$ (%)</td>
<td>-25.9 ± 0.2 from IRMS</td>
</tr>
<tr>
<td>Fraction modern</td>
<td>0.8904 ± 0.0022</td>
</tr>
<tr>
<td>$\Delta^{14}C$ (%) and collection date</td>
<td>-117.1 ± 2.2 1 Mar 2020</td>
</tr>
</tbody>
</table>

Measurement Comment

Sample Treatment Details

65240 mg of raw sample was received. Description of sample when received: Sample was submitted in a soft plastic bag with a cardboard label. Sample contained a 10 x 5 x 6 cm piece of light brown wood with thin ridged bark and a light coating of grey soil. Submitter indicated that the section to subsample was a protrusion between two staples and a branchlet hole, an area of about 1 x 2 cm. 251.61 mg was subsampled and prepared by: Cut/Scrape. Pretreatment description: The protrusion was removed using a scalpel, coming off in one large bit and a few shavings. Under the microscope the wood was moderately soft and porous, with silt covering the outer surface. The outer surface was quite fragile, and the bits of silt came off easily in flakes. Chemical pretreatment was by cellulose extraction. Weight obtained after chemical pretreatment was 98.9 mg. Carbon dioxide was generated by elemental analyser combustion and 0.5 mgC was obtained. Sample carbon dioxide was converted to graphite by reduction with hydrogen over iron catalyst.

Conventional Radiocarbon Age and $\Delta^{14}C$ are reported as defined by Stuiver and Polach (Radiocarbon 19:355-363, 1977). $\Delta^{14}C$ is reported only if collection date was supplied and is decay corrected to that date. Fraction modern (F) is the blank corrected fraction modern normalized to $\delta^{13}C$ of -25‰, defined by Donahue et al. (Radiocarbon, 12(2):135-142, 1990). $\delta^{13}C$ normalization is always performed using $\delta^{13}C$ measured by AMS, thus accounting for AMS fractionation. Although not used in the $\delta^{13}C$ calculations, the environmental $\delta^{13}C$ measured offline by IRMS is reported if sufficient sample material was available. The reported errors comprise statistical errors in sample and standard determinations, combined in quadrature with a system error based on the analysis of an ongoing series of measurements of standard materials. Further details of pretreatment and analysis are available on request.

National Isotope Centre, GNS Science
PO Box 31-312 Lower Hutt, New Zealand
Phone +64 4 570 4644
Email radiocarbon@gns.cri.nz
Website www.RafterRadiocarbon.co.nz
Rafter Radiocarbon

Accelerator Mass Spectrometry Result
This result for the sample submitted is for the exclusive use of the submitter. All liability whatsoever to any third party is excluded.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Matar #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Subfossil matal, excavated 1 m subsurface</td>
</tr>
<tr>
<td>Fraction dated</td>
<td>Wood</td>
</tr>
</tbody>
</table>
| **Submitter** | David Hauke
Ara Institute of Canterbury Ltd |

Conventional Radiocarbon Age	**1222 ± 20**	(years BP)
δ¹³C (‰)	-24.2 ± 0.2	from IRMS
Fraction modern	0.8588 ± 0.0022	
Δ¹⁴C (‰) and collection date	-148.4 ± 2.2	1 Mar 2020

Sample Treatment Details

4236.2 mg of raw sample was received. Description of sample when received: Sample was submitted in a soft plastic bag with a cardboard label as a piece of wood 9 x 1 x 0.7 mm with frayed edges on one end. Submitter requested one edge to be subsampled. This edge was lightly covered with silt. 207 mg was subsampled and prepared by Cut/Scrape. Pretreatment description: Under the microscope the surface of the wood was moderately soft and silt covered. A subsample was taken from next to the staple with a scalpel. The surface of the subsample was cleaned with a scalpel to remove silt. The surface section from this piece was flaked off to move to chemical preparation. The rest of the cleaned piece was stored. Chemical pretreatment was by cellulose extraction. Weight obtained after chemical pretreatment was 25.5 mg. Carbon dioxide was generated by elemental analyser combustion and 0.5 mgC was obtained. Sample carbon dioxide was converted to graphite by reduction with hydrogen over iron catalyst.

Conventional Radiocarbon Age and Δ¹⁴C are reported as defined by Stuiver and Polach (Radiocarbon 19:355-363, 1977). Δ¹⁴C is reported only if collection date was supplied and is decay corrected to that date. Fraction modern (F) is the blank corrected fraction modern normalized to δ¹³C of -25‰, defined by Donahue et al. (Radiocarbon, 12(2):135-142, 1990). δ¹³C normalization is always performed using δ¹³C measured by AMS, thus accounting for AMS fractionation. Although not used in the δ¹⁴C calculations, the environmental δ¹³C measured offline by IRMS is reported if sufficient sample material was available. The reported errors comprise statistical errors in sample and standard determinations, combined in quadrature with a system error based on the analysis of an ongoing series of measurements of standard materials. Further details of pretreatment and analysis are available on request.

National Isotope Centre, GNS Science
PO Box 31-312 Lower Hutt, New Zealand Phone +64 4 570 4644
Email radiocarbon@gns.cri.nz Website www.RafterRadiocarbon.co.nz
CONVENTIONAL RADIOCARBON AGE 932 ± 20 years BP

CALIBRATED AGE in terms of confidence intervals

1 sigma interval is 1151 AD to 1201 AD 799.0 BP to 749.0 BP (100.0% of area)

2 sigma interval is 1050 AD to 1083 AD
 and 1142 AD to 1215 AD 900.0 BP to 867.0 BP (15.9% of area)
 and 808.0 BP to 735.0 BP (84.1% of area)

CONVENTIONAL RADIOCARBON AGE 1222 ± 20 years BP

CALIBRATED AGE in terms of confidence intervals

1 sigma interval is 779 AD to 811 AD
844 AD to 853 AD
856 AD to 892 AD

1171.0 BP to 1139.0 BP (33.8% of area)
1106.0 BP to 1097.0 BP (8.7% of area)
1094.0 BP to 1058.0 BP (57.6% of area)

2 sigma interval is 773 AD to 823 AD
831 AD to 898 AD
931 AD to 961 AD

1177.0 BP to 1127.0 BP (31.5% of area)
1119.0 BP to 1052.0 BP (56.8% of area)
1019.0 BP to 989.0 BP (11.6% of area)

National Isotope Centre, GNS Science
PO Box 31-312 Lower Hutt, New Zealand Phone +64 4 570 4644
Email radiocarbon@gns.cri.nz Website www.RafterRadiocarbon.co.nz
Graeme Dingle Foundation

We want every child to know:

What you have inside is greater than any obstacle.
Our story.

Founded by Kiwi legends, Sir Graeme Dingle and Jo-anne Wilkinson, in response to NZ’s woeful youth statistics (some of the worst in the OECD), we’ve walked alongside and strengthened the mental fitness of young Kiwis for the past 24 years.
Increased demand – 3776 students weekly

2020 has seen the number of young people participating in our programmes increase by almost 20%, with ‘7 new schools’ joining the Kiwi Can family.

75% of our partner schools in Christchurch are decile 1-3.

Christchurch Schools
- Te Waka Unua
- St Bernadettes
- Bamford
- Burnside
- Gilberthorpe
- St Anne’s
- Northcote
- Linwood College *(senior & junior)*
- Banks Ave
- Bishopdale
- Addington
- Homby High School *(senior & junior)*

South Canterbury Schools
- Makikihi
- Oceanview Heights
- Waimate Main
- Waimate Centennial
- Bluestone
- Chertsey
- Timaru South
Hornby School Programmes

566 students every week

Kiwi Can

<table>
<thead>
<tr>
<th>School</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Bemadettes</td>
<td>126</td>
</tr>
<tr>
<td>Hornby High</td>
<td>97</td>
</tr>
<tr>
<td>Gilberthorpe</td>
<td>175</td>
</tr>
</tbody>
</table>

Stars

<table>
<thead>
<tr>
<th>School</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hornby High</td>
<td>156</td>
</tr>
</tbody>
</table>

Project K

<table>
<thead>
<tr>
<th>School</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hornby High</td>
<td>12</td>
</tr>
</tbody>
</table>
Hornby School
Annual Programme Costs

- Kiwi Can: $78,000 / annum
- Stars: $38,000 / annum
- Project K: $77,000 / annum

Total: $193,000 / annum
Project K
Mentoring Programme
2020 Cohort
Project K Mentoring Programme

2019 Cohort
Project K

Wilderness Expedition
Delays Due to Covid
STARS
Peer Mentoring

Shristi

“I would love to help give this opportunity to this year's year 9 class, and help them transition into high school life. I know that I would have enjoyed this when I were in year 9 so being a part of this opportunity makes me feel as if I’m giving back to our Hornby High school community for all the amazing opportunities I am given. This opportunity has helped me as well in my high school life, as I know now how important taking the opportunities that are given to the year 9 students.”
STARS Peer Mentoring

Rosa

“I decided to become a Star peer mentor this year because when I was a year 9 student I wanted to be a peer mentors myself when I was old enough (of course back then year 12 felt like forever away). I had done other mentoring/leadership roles before I signed up for stars, so I wasn’t a complete fish out of water but it wasn’t completely what I was expecting either (year 9s are a little bit different to years 1 and 2s). But I have been enjoying it and I am excited to see what the rest of the year holds and the new challenges it will bring.”
Kiwi Can
Hornby High School
Kiwi Can

St Bernadette’s School
Kiwi Can
Gilberthorpe School
EXTRA SLIDES
The Graeme Dingle Foundation has been helping Kiwi kids in Canterbury since 2003.

We’ve delivered our programmes to 33,042 young people across Canterbury and this year alone, we are walking alongside 3776 young people across 22 schools.

We supported the tamariki and rangatahi of East Christchurch after the Earthquakes and as Christchurch started to rebuild, our teams maintained continuity which provided an anchor to help our students connect, allay anxiety and build resilience.

Our vision is that by 2050, NZ will be the best place in the world for our tamariki to be young.

With the right support in place for our kids, we believe we can make this true for the communities of Canterbury. But we can’t do this alone!
An established charity since 1995, we are a leader in child and youth development, walking with **over 27,000** five to 18 year olds throughout **40 communities** in **11 regions** of New Zealand.

25 years ago, Sir Graeme Dingle and Jo-anne Wilkinson, Lady Dingle had a vision to improve New Zealand’s negative youth statistics.

Today they continue to be relentless campaigners, supporters, fundraisers and ‘champions in helping young New Zealanders achieve their potential.

This is Our Story
How we do this.

Helping each individual develop:
MENTAL AND EMOTIONAL STRENGTH

The Graeme Dingle Foundation programmes

SELF BELIEF CONFIDENCE RESILIENCE

LIFE VALUES

TEAM WORK TRUST RESPECT
How Do Our Programmes Help?

PREVENTION

- Builds resilience, respect & self-efficacy
- Get the transition to high school right
- Puts kids on the right track for a career
- Steps in for the kids who need it most

- Harnesses Potential
- Reduction in negative youth statistics

KIWI CAN STARS CAREER NAVIGATOR PROJECT K